
Space Science Enterprise ~ 125

Validating Requirements for Fault-Tolerant Systems Using Model Checking
Francis Schneider, jack Callahan, Steve Easterbrook

The objectives of this work were to develop new
techniques for validating fault-tolerance requirements
in the early stages of software development, and then
determining whether the requirements and high-level
designs for fault-tolerant systems provide the required
reliability before they are implemented. Another
purpose was to explore the integrated application of
model-checking technology as a verification and
validation technique for software requirements.

controller, in which a checkpoint and rollback
scheme is used to provide fault tolerance during the
execution of critical control sequences, was con-
ducted. The software-requirements specification for
the spzcecr2fi estah!ished t h e reqi-!ired behavinr t'nr

the checkpoint and rollback scheme. Their validity

words, it was not possible to determine whether the
behavior described in these requirements would
provide the desired level of fault tolerance. Testing of
the eventual implementation would not necessarily
provide this validation either, a result of the difficulty
of ensuring test-case coverage for all possible fault-
occurrence scenarios. The approach taken was to
derive a iormal automata-based model from the
specification, and to use a model-checker to explore
i ts behavior. Various high-level safety properties were
used to validate the generalized system model. Key
system functional requirements were validated by
using linear temporal logic to define the correspond-
ing liveness properties, which are required to be
satisfied when the system responds to faults. The
model checker, Spin, identified traces in the model
for which these properties were violated, using
nondeterministic fault injection.

Validation of fault-tolerant architectures i s a
difficult problem, and exhaustive testing of the
implemented systems i s an unsatisfactory approach

expensive to fix. If the fault-tolerant architecture is

A case study of a dually redundant spacecraft

r

I coiild not be de:c:mined through inspection. !n other

I
to its soiution. Errors found after implementation are 1

found to be deficient during system testing, then
much of the development effort may have been
wasted. Testing cannot guarantee coverage of all
possible fault conditions, for the precise timing of
fault occurrences can determine how they are
handled. For these reasons, techniques that can be
applied earlier in the life cycle are needed.

Model checking can be applied to abstract
models of the proposed architecture early in the life
cvcle, and can explore model behavior in the
presence of a wide variety of fault conditions. A
model was abstracted from design notes for the dual-
redundant system. The model was pruned to remove
states that did not affect the properties to be tested,
therehy reriircing the si7e of the state space to one
that i s manageable by current model-checking
?GO!S. Five different izu!t a t e p i e s were identified,
and six separate requirements on the rollback scheme
were validated. Each of the requirements involved
the exhaustive examination of approximately
100,000 states in the model, and took about
30 seconds. The response and recovery in each case
was to the injection of a fault of the appropriate
category in all possible ways, based on the model.

tailed in the verification. Three anomalies were
identified: two were errors in the requirements that
might not occur in the implementation, and the third
was a discrepancy in the detailed requirements that
could allow for erroneous behavior of the imple-
mented system. This analvsis demonstrated that the
approach is feasible, and that it i s capable of detect-
ing subtle errors that had escaped detection through
other means.

Three of the six runs for the six requirements

Point of Contact: S. Easterbrook

steve@research.ivv.nasa.gov
(304) 367-8352

S p a c e T e c h n o l o g i e s

